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FILTRATION OF A LIQUID WITH FREE BOUNDARIES
IN UNBOUNDED REGIONS

E. V. Gubkina and V. N. Monakhov! UDC 517.958.532

The variational method is used to solve problems of filtration of a liquid in unbounded regions
(inflow of a liquid to a drain, filtration of a liquid through a plain earth dam on a permeable
base, etc.).

In the theory of steady flows of an incompressible liquid and gas, an important role belongs to varia-
tional principles developed by M. A. Lavrent’ev (1936) for conformal and quasi-conformal mapping. Another
approach to these problems, which also has a variational character, was proposed in the papers of A. We-
instein (1924) and in the joint paper of J. Leray and A. Weinstein (1934). In contrast to these works, the
variational method proposed by M. A. Lavrent’ev allowed him to establish not only theorems of existence of
planar jet flows of a liquid but also theorems of uniqueness of the solutions under the same assumptions on
the shape of obstacles. The method turned out to be also applicable to axisymmetric jets (J. Serrin, 1954).

In 1959, methods of M. A. Lavrent’ev, A. Weinstein, and J. Leray were further developed in the
papers of V. N. Monakhov; the solvability of a wide class of planar steady problems of hydrodynamics with
free boundaries was proved. As applied to the filtration theory, V. N. Monakhov proposed a variational
method for proving the solvability of functional equations relative to the sought parameters of conformal
mappings of finite regions with a polygonal shape of the specified part of the boundary. In the present paper,
this method is extended to problems of liquid filtration in unbounded regions.

1. Formulation of the Problem. We study planar steady flows of an incompressible liquid in a
porous medium (seam) with free (unknown) boundaries, which correspond to various hydrodynamic schemes
of liquid filtration in the seam: inflow of a liquid to a drain or a well from a porous layer, liquid filtration from
an open reservoir through a porous layer (for example, a plain earth dam or a porous insert in a chemical
reactor), and liquid filtration under a hydrotechnological building whose underground part is found from
given fields of pressures or velocities.

The case of an infinite depth of a saturated porous layer (filtration region of the half-plane type) is
considered in a similar manner to the case of a finite region of filtration [1]. Therefore, we confine ourselves
to the following two types of hydrodynamic filtration schemes: a liquid flow in a porous layer in the form of
a half-band with one infinite apex and in a layer in the form of a band with two infinite apices [1-3].

We direct the Oz axis vertically upward, opposite to the vector of acceleration of gravity and per-
pendicular to the main direction of the filtration flow, and consider, in the plane of the complex variable
z = T + 1y, the filtration domain D bounded by the free boundary L (streamline), adjoining porous walls
of the seam (equipotentials) P! (for y > 0) and P2 (for y < 0), and the impermeable foot of the seam P°
(streamline).
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The specified sectors P* ¢ dD (k = 1, 2) of the boundary 8D are polygons with apices and ends at
the points z;? (j = T, nk) and angles ai?ﬂ' in them; the foot of the seam P? is assumed to be a straight line for
simplicity.

We denote the point of intersection of P! and L as 21 € PN L, zp = P! N P® = 0o, 23 = PO P2
(possibly, z3 = 00), and z4 = P2N L. In the vicinity of the point 25 (and the point 23, if z3 = 00), the polygon
(P! U P%) (correspondingly, P° U P?) is a half-band of width H (H3):

Hy=Re(z!-2° >0 for FePF if ImzF>1 (k=0,1)

[correspondingly, we have H3 = Re (2% — z%) > 0, where 2% € P* and k = 0 and 2]. Similarly to the case of
liquid filtration in a plane earth dam [1, p. 268], we set the quantity H [H = Re(z; — 24) = |Re 24| > 0] of
the acting (normalized) head of the liquid in the porous layer.

In the domain D, we seek an analytical function w(z) = ¢ + ¢ (a complex potential of filtration),
which satisfies the following boundary conditions on 8D: ¢ = const for z € P!, P2 v = const for z € P?,
and ¢ + = = const and ¥ = const for z € L. In the plane w, the domain D corresponds to the rectangle
D* = w(D) with apices at the points wy, (k = 1,4), which are operands of z, |w; —w4| = |wy —w3| = Hisa
given liquid head and |w; — wa| = |ws — wy| = Q is the sought flow rate. Note that, in the case considered,
the region of leaking (drainage) [1-3] is horizontal. The derivatives of conformal mappings of the upper
half-plane E = {Im ¢ > 0} onto the domains D and D* have the following form [1]:

4
= -0 =0, F =M,
1
M)
_ 5 m) (¢ = 75)"° o)l _
n=JJ¢-H5 (-7 (¢-m)7", | oo

k.j

Here tA are the operands of the apices z’C (k=1,2; j =1,ng) of the polygon (P! U P?), 7, are the operands
of the pomts zx (k =1,4), and ;3”“7:' = (a — 1) are the external angles of the polygon (P! U P?); § =0
for |23} < 0o and & = 1 for 53 = oo. We norma.hze the conformal mapping z({), z : £ — D assuming that
7’4-t =-l,n=t=18_=-2z=zn)=H+H,n <t} <1.‘11<_,_1 <mn (j=TI,n—1), and

t2<t+1<7-4 (J_‘lTol‘T)
The unknown constants 7, 73, and tk (k=1,j=2n;k=2,j= m) are found from the

following system of equations, which defines the geometry of the polygon P = U Pk.

k=0
1
= [|Se (=1 j=Tm=T k=2 j=TFm=-2)
& 2)

H; = nM(m)ILi(7), i=2,2+7y (m1>21, n2>3).

Here IT; = I(¢)(¢ — ) (2 =2, 3); v = 0 for |z3| < 00 and v =1 for z3 = oco.
Note that, according to conditions (2), not all lengths of the segments of the polygon P? are fixed.
This is related to the presence of a horizontal section of leaking (drainage) whose length is a sought quantity
in the vicinity of the point z4 = P2 L.
2. A Priori Estimates. We use the notation a = (af,...,al ;0f,...,a2,) € R*(n = ny + n2) for
2
the characteristic of interior angles afﬂ' of the polygon P = Laij, l=(1,.. m,l . ,liz_z) (l,lzl = Ho,

1?2 = H; for z = co) for the metric characteristic of P, and call p = (a,l) the geometric characteristic of P.
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We consider the family G(8) of simple polygons P C G with the characteristics p € G(8):
0<d<af <2, (k)el; 0<(of,03)<3/2-54,

T
G(d) = Z(a;?_.l)zzo, k=1,2 (a%=0 for 23 =), (3)
j=1 —

|1nl;°|<5_1, .7= y 1 k:]_’ j=1,n2°-2) k=27

T
where I = (j = 2,n1,k = 1; j = 1,n2 — 1,k = 2). The condition Z(af ~ 1) = 0 ensures the validity of the
=1
necessary estimate 0 < |{|?|2| < oo in the vicinity of ¢ = co.
We assume that Atf = ltfH -t (G = T,ng-Lk = 1,n - 2) and comsider u =
(t,.. .t th, 2 ) €RYI(th L, =Tt = ).
For the solution u € R"~? of system (2) corresponding to the simple polygon P C G(§), we establish
the validity of the following inclusion (a priori estimates):
veQ={ul0<e@) <A<, j=Tne~1, k=1,2}. (4)
Here the constant £(6) > 0 depends only on the geometric characteristic p of the polygon P in (3).
We consider one corollary of system (2):
1

4
H= /Ho(t) dt, TIp= H |t — 7| 712,
-1 k=1

Taking into account that |r3|< itirl( =2, we find H < K1(m2—1)"1/2, whence we obtain m— 1 < (H 1K;)? =
K.
Let 7 = (72 — 1) — 0. Then we have

1 1
H;/mdt;K;1/(1+r—t)'1dt, ie. 7> ¥ 1) l=e >0
0 0

Coming back to the relation for H, we obtain H < K4s2_1/2(|7'3| —1)"1/2, whence we have |73| < K.
We now establish the validity of the estimate t,1,1 ~1 > & > 0. Assume, to the contrary, that r
(¢}, — 1) — 0. We introduce the auxiliary function

¢
We consider the half-circle K, = {|¢( =1 —7/2|=r} N {Im{ > 0} and show that

pw=k/mom«w4~0asr~a
K,

l-r 1
M= 5 [ LIE a0~ w0, r=0, Kl<on
21

In this case, obviously, we have {i(r) — 0 (k = I,n; — 1), which is impossible; thus, we obtain
tp, —12¢e>0.

2 71
In accordance with the geometry of the polygon P = U P*, we have Z Bt = 0. We assume that
0
k=1

71

3 = %'+ 5, with all #} < 0 collected in £’ and all 5} > 0 in £”, and note that 8} = ~X'f; = > 0.
1

Taking this into account, we find

1~r

‘Mr(CN <C /(1 + t)l/z—aiz(p(t)w
-1

{t ¢l

dt, ‘p=(1+1it)u'
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Since ¢(t) < 2* for t € [-1,1 — 7], then we have

IMOIE-1"2<Co (€K, 1<1/2),
which leads to the estimate |A-] < Cyr!/2. In this case, obviously, we obtain }(r) — 0 (k = T,7; — 1), which
is impossible, i.e., tL —~ 1 > ¢ > 0. It is proved in a similar manner that tk ~12e>0fork=2,n; — 1.

We assume that 7 — t}) =r —0(p=2n) IfpP= Z'Bk # 0, then in relation (2) we obtain
k=p
Hy = m|Ua(r)M(7s)|, M(r2) # 0,00, and IIa(rz) — 0 for 8% > 0 and IIx(7;) — oo for B < 0, which
1

contradicts condition (3); therefore, we have|ln Ha| < 671 < co." Let P = Z BL = 0. We assume that
ny k=p

> B =%+ 5" with all 8} > 0 collected in T’ and all G < 0 in £”. We use the notation L'} = u > 0
k=p

and Z]",BI = —; in accordance with the assumption 8P = 0, we have u — v = 0. We consider the expression
for {,—1 (p 2 2) in (2), taking into account that t:_, does not belong to converging parameters; therefore, we
have tzl, — tzl,_ > 2¢ > 0 (e is fixed). We assume that tl =rand 75— 17=r — 0. Then we obtain

Loy > f l |t > K f (r =P (r 47—t dt = KI(r).

We perform the substitution 7 —t = sr in the mtegral I(r):

e/r E/T
1\~=-v
I(r)=/s“(1+s)_"d32/(1+—s-) ds—o0 as r—0,
0 1

which contradicts condition (3) |Inl,—1| < 67! < co. Thus, we have established
1+&‘1\tk\7’2—-62, k=32 n;, (e1,22) > 0.

These inequalities make it possible to use the estimates uj = t;,, —¢L > ¢ > 0, where k = I,m;
2
(tn,+1 = 72), which are valid in the case of a finite polygon P = UPk [1]. Similar considerations are also

applicable in proving the estimates At? =7 | — t2 > &> 0, where k =T1,nz — 1 (t3 = 13), corresponding to

the polygon P?. The a priori estimates (4) are proved.
4

Remark 1. The main difficulty in obtaining estimates (4) is the fact that the density A(t) = H [t —
1

74|71/ of the integral M(¢) in (1) depends on the sought constants 72 and 73 (r; = 1 and 74 = —1). In an
appropriate representation of M(¢) in [1, p. 111], A(t) is a function of only prescribed constants 7, and 74.

Remark 2. As follows from the proof of the a priori estimates (4), even if P° € G() is not a straight
line, the validity of (4) is obviously retained in this case too.

Remark 3. Another normalization of conformal mappings defined in (1) is possible: 1y =1, 7y = -1,
and 3 = —2. Then from the relation

1
dH
H(m) = / o (£)] dt [dT <0, H(1) = 00, H(co0) = o],
2
we can uniquely determine 75 and, hence, the flow rate of the liquid
T2
Q= [ Im(t)] .
1
In this case, one equation in system (1) should be rejected, for example, it is not allowed to set the value of

H,. Therefore, this normalization is unphysical.
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3. Local Uniqueness of the Solutions. We write system (2) in an operator form with respect to

w=(t},...,th 5t .. 12, _9) = (u1,.. -, Un2) € R" 2 (n =ny +ny):
I=g(u,0)=(g1,--,9n-2), (5)
where [ = (1, nl, cee, liz_l) = (l,...,In-2) is the metric characteristic of P and « is the characteristic

of interior a.ngles of P
We prove the following properties of the operator g(u,a):

D dg;
9(u,a) € C2(Q x G); —53 ={9i;} #0, g = a—ij, u€ Q. (6)

The sets  and G are defined in (3) and (4).
Differentiability of the components g; representable in the form

J+1

/I ldt

follows from [1] after reducing the integration intervals to [0, 1]. For the components g,, = Hz and gn,+1 = H3,
Hy = m|li () M ()| (k =2, 3), differentiability on the set (u,p) € (Q x G) can be verified directly.

We prove the nondegeneracy of the transformation ! = g(u, &), Dg/Du # 0 by a variational method in
a similar manner to [1]. We express the variation of [ for a fixed a via the variation of the sought solution u
in (5): 6! = (Dg/Du)du. Assuming that du # O for 8! = 0, in the resultant equality we calculate the
variations of the mappings z : E — D and ¢ : D — E through each other: 2z + z:6¢ = 0. Posing a boundary-
value problem for §z from this relation, we obtain dz = II({)Qm,(¢), where Qmy(¢) is a polynomial of power
mop = 0. We now calculate §z directly from the representation z = z(¢):

< ¢
= / MOME)d¢+z1,  dz= / () ®(¢,0u)d¢ (621 = 0),
1

1

oM ] btk &

o= [1-ah)c-HM(E) +

Jik

Note that |§z(o0)} < c0. Comparing 6z and (dz)¢ in the vicinity of t;?, from the resultant representation with
0z and (6z)¢ found by solving the boundary-value problem, we finally obtain

bz = H(c ~ 5T Qm(¢)(¢ — ) TH¢ — ). @

ik
Here 7}“ =0 if&t;? = 0 and ‘y}c =1 for 6t;-c # 0; 0 = 0 for |23] < oo and § = 1 for 23 = 00; Q1 (¢) is a polynomial
of power m. In this case, we have A = Zaf =nj +ng = n, for |z3] < 0o and A = 1 for 23 = co. Since

J,k
6tt = o6t2, = 6ti2_1 = 0, we obtain Z ¥; < n— 3. Then, according to representation (7), in the vicinity of
gk
¢ = oo we have {6z| |{|~? < oo, where ¢ = Z(af - “/f) +mg —1—4 > 2, which contradicts the boundedness

ik
of dz(c0). Thus, we have dz = 0, whence it]necessarily follows that ®({,du) = 0 in the representation for 4z,
which, in turn, involves the equality du = 0. Relations (6) are proved.
4. Existence and Uniqueness of the Solutions. The a prioriestimates (4) and the local uniqueness
(6) of the solutions of system (2) corresponding to a simple polygon P C G(4) defined in (3) allow us to use
the method of continuity to prove its solvability [1]. The variant of the method of continuity developed in [1]
involves the construction of local variations of the initial polygon Py for which the solvability of (2) is known,
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by transforming Py to a given polygon P. By virtue of (6), we have Dg/Du # 0, and the solvability of (2)
for a small deformation of Py, follows from the theorem of implicit functions.

An algorithm for constructing a family of polygons Py, converging to a given polygon P is proposed in
[1], and the solvability of (2) is proved on the grounds of its solvability for the initial polygon P.

In jet problems of hydrodynamics [1, Chapter 4], this algorithm is also implemented in the case of
infinite regions. This generalization is transferred in a similar manner to problems of filtration theory for
which properties (4) and (6) are established. The theorem of uniqueness of the solutions of system (2) for
a given polygon P C G(4) also follows from the method of continuity if this theorem is valid for the initial
polygon Pj.

Let us construct first an initial polygon P, for problems of filtration theory in domains of the type of
a half-band (|z3] < 00). We assume that P = {z = 0,y > y3 = Im 23}, P} = {x = H, > H,y > 0}, and
P}={0<z < Hy— H,y = rsin(l — o)}, where a € (1/2,1) [condition (3)]. The head H is given, and the
depth Hs is not fixed yet. Then in (1) we have

Q)= - ¢=m)*" ¢~ n=1 nm=-L

In addition, we fix the constant 73 = —2 and from the condition
h dH
H= / Io(t)] dt = H(rz) (57-_2- <0, H(co)=0, H(1)=oo)
21

we uniquely determine 7» and, consequently, Ha = m{ll2(m2)M ()] in (1).
If there are apices z;? (j = 1,ng, where k = 1 and 2) with angles afﬂ- at them on P* in the initial

2
polygon P = L(_)JP" , then for the polygon Py we introduce fixed operands t’gj of the “apices” z(')“j € Pé‘ (2} = =1,
2 = z3, and 22, = z4) with angles a’gjn' = 7. They should obey the conditions
tcl)l =1< t(l)j < t(1)j+1 < T3, tgl =73 < t%j < tng < T3

Using the constructed conformal mapping z=2¢(¢), z0: £ — Do, Py C 8Dy, we uniquely determine the apices
::gj = zo(t’gj) and, consequently, lo; = ]zgj - z§j|.

2
System (2) corresponding to the thus-fixed polygon Py = (J P¥ (zgj C P, a’gj = 1) in terms of
1

construction is uniquely solvable with respect to ug = (3, .-, t(l)nl, To3t3, ..., tfu_2), i.e., Py has the required
properties of the initial polygon. The deformation of Py to the prescribed polygon P corresponding to the
initial problem of filtration theory is now constructed using a standard procedure {1, Chapters 3 and 4].

2
Let z3 = co. We construct a polygon Py = |J P§:
0
P ={z=0,-00<y<oo}, P} ={z=H,> H, y >0},

Pl={c=H—Hyy<w=Imz, 3o <y <y =Imz},

and there is an angle apm = 27 at the point zp € P (section of PZ). The head H and the depth H> are set.
In (1), we have

nE¢) = [(¢ = )¢ —m)] (¢ —7), z0==z(mn), z0:E— Dy, PyCdDo.
As in the previous case, we fix m = 1, 4 = —~1, and 73 = —2, thus, defining 7 from the condition
1
H= / ITIo (8)] .
-1
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We now consider the equation for H3 = Ho — H > 0:

TO — T3 ng _ _
— T3|M(7’3)| (37—'0_ >0, H3(m)=0, Hs(n)= 00),

Hi(m)=m

from which we uniquely find 7o € (73, 74).
If necessary, we fix the constants t’(‘,’j and construct the points z(’fj = zo(tlgj), 20 : E — Dy, Py C 8Dy.
System (2) corresponding to the constructed polygon P, is, obviously, uniquely solvable; hence, Py has
all the necessary properties of the initial polygon. We prove the following theorem.
Theorem 1. Let liquid filtration occur in a domain D bounded by a free boundary L and a simple

2
polygon P = |J P* C G [condition (3)]. Then system (2) with respect to the vector u € R*~2 of the sought
0

parameters of the conformal mapping z : E — D, 8D = P U L and, hence, the initial problem of filtration
theory are uniquely solvable.

Remark 4. In [1, Chapters 3 and 4], the family Pt Tk (m — 00) is used to justify the limiting
transition to given curved boundaries I (k = 1, 2), which is also applicable in the examined problems of the
filtration theory. However, the uniqueness of the solutions is not guaranteed in the limiting case.

Remark 5. For curved boundaries ¥ C 8D, the theorem of existence and uniqueness of filtration
problems can be established by other methods [1, Chapter 8, § 5].

Let, for definiteness, z3 = oo,

2

% z=f"), l>v @ =0 v =Inz).

We assume that f*(y) € C3(T*), f¥ = z* = const for |y| > yF > &, and df¥/dy # 0 for v§ < |y| < yF. We
make the substitution of variables: z — f*(y) = £ — 2* and y = . Then I'* in the new variables will be
transformed to straight half-lines P* (second example of Pp). The resultant simplest boundary-value problem
for the generalized analytical function z = F(¢) has a unique solution [1, p. 388].

This work was partly supported by the Russian Foundation for Fundamental Research (Grant No. 99-
01-00622) within the framework of the program “Universities of Russia — Fundamental Research” (No. 1788).
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