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F I L T R A T I O N  OF A L I Q U I D  W I T H  F R E E  B O U N D A R I E S  

IN U N B O U N D E D  R E G I O N S  

E. V. G u b k i n a  and  V. N. M o n a k h o v  1 UDC 517.958.532 

The variational method is used to solve problems of filtration of a liquid in unbounded regions 
(inflow of a liquid to a drain, filtration of a liquid through a plain earth dam on a permeable 
base, etc.). 

In the theory of steady flows of an incompressible liquid and gas, an important role belongs to varia- 
tional principles developed by M. A. Lavrent'ev (1936) for conformal and quasi-conformal mapping. Another 
approach to these problems, which also has a variational character, was proposed in the papers of A. We- 
instein (1924) and in the joint paper of J. Leray and A. Weinstein (1934). In contrast to these works, the 
variational method proposed by M. A. Lavrent'ev allowed him to establish not only theorems of existence of 
planar jet flows of a liquid but also theorems of uniqueness of the solutions under the same assumptions on 
the shape of obstacles. The method turned out to be also applicable to axisymmetric jets (J. Serrin, 1954). 

In 1959, methods of M. A. Lavrent'ev, A. Weinstein, and J. Leray were further developed in the 
papers of V. N. Monakhov; the solvability of a wide class of planar steady problems of hydrodynamics with 
free boundaries was proved. As applied to the filtration theory, V. N. Monakhov proposed a variational 
method for proving the solvability of functional equations relative to the sought parameters of conformed 
mappings of finite regions with a polygonal shape of the specified part of the boundary. In the present paper, 
this method is extended to problems of liquid filtration in unbounded regions. 

1. Fo rmula t ion  of  t h e  Prob lem.  We study planar steady flows of an incompressible liquid in a 
porous medium (seam) with free (unknown) boundaries, which correspond to various hydrodynamic schemes 
of liquid filtration in the seam: inflow of a liquid to a drain or a well from a porous layer, liquid filtration from 
an open reservoir through a porous layer (for example, a plain earth dam or a porous insert in a chemical 
reactor), and liquid filtration under a hydrotechnologiced building whose underground part is found from 
given fields of pressures or velocities. 

The case of an infinite depth of a saturated porous layer (filtration region of the half-plane type) is 
considered in a similar manner to the case of a finite region of filtration [1]. Therefore, we confine ourselves 
to the following two types of hydrodynamic filtration schemes: a liquid flow in a porous layer in the form of 
a half-band with one infinite apex and in a layer in the form of a band with two infinite apices [1-3]. 

We direct the Ox  axis vertically upward, opposite to the vector of acceleration of gravity and per- 
pendicular to the main direction of the filtration flow, and consider, in the plane of the complex variable 
z = x + iy, the filtration domain D bounded by the free boundary L (streamline), adjoining porous walls 
of the seam (equipotentieds) p1 (for y > 0) and p2 (for y < 0), and the impermeable foot of the seam p0 
(streamline). 
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T h e  specified sec tors  pk  C O D  (k ---- 1, 2) of the b o u n d a r y  OD are polygons with  apices and  ends at  

the poin ts  z]  ( j  = 1---,-~) and  angles a~: r  in them;  the foot of  the  s e a m  pO is assumed to  be  a s t ra igh t  line for 

simplicity. 
We deno te  the  po in t  of  in tersect ion of p1  and L as Zl E p1  M L, z2 = p1  N pO = cx~, z3 ---- pO A p 2  

(possibly, z3 = cx~), and  z4 = p2  M L." In  t he  vicinity of the po in t  z2 (and the  point  z3, if z3 = oo), the  po lygon  
( p l  U pO) (correspondingly ,  pO U p2 )  is a ha l f -band of w i d t h / / 2  (H3):  

/-/2 = Re  (z 1 - z ~ > 0 for z k E p k ,  if I m  z k >> 1 (k = 0, 1) 

[correspondingly, we have  H3 -- Re (z 2 - z ~ > 0, where z k E p k  and k -= 0 and 2]. S imilar ly  to  the  case of 

liquid f i l t ra t ion in a p lane  ea r th  d a m  [1, p. 268], we set the  q u a n t i t y  H [H -- Re  (zl - z4) = ]Rez4I > 0] of  

the act ing (normal ized)  head  of the l iquid in the  porous layer.  
In  the  d o m a i n  D,  we seek an ana ly t i ca l  function w(z)  = ~ 4- i~b (a complex  po ten t ia l  of  f i l t ra t ion) ,  

which satisfies the  following b o u n d a r y  condi t ions  on OD: T --- cons t  for z E p1 ,p2 ,  ~b ----- const  for z E pO, 

and r 4- x = const  and  ~p -- const  for z E L. In the plane w, t he  domain  D cor responds  to the  rec tangle  

D* = w(D)  with  apices  a t  the  points  wk (k -- 1--,4), which are  o p e r a n d s  of zk, [Wl - w41 -- Iw2 - w3] -- g is a 

given liquid head  and  [wl - w2] = ]w3 - w4] = Q is the sought  flow rate .  Note  tha t ,  in the  case considered,  
the region of leaking (drainage)  [1-3] is horizontal .  The  der iva t ives  of  conformal  m a p p i n g s  of  the  u p p e r  
half-plane E --- { I m r  > 0} onto  the d o m a i n s  D and D* have  the  following form [1]: 

4 dz 
= k _ r  = n o ( C ) ,  = 

de 1 

n = I I ( r  - - )-1(r _ 
~,j 

1 

1 i Ino( t ) l  
, rz  I H ( t ) l ( t - r  

- 1  

dr. 

(1) 

Here t k are the  o p e r a n d s  of  the  apices z ]  (k = 1, 2; j = 1,nk ) of  the  polygon (p1 U p2), rk are the  ope rands  
of the points  zk (k ---- 1--,4), and ~317r = (a~ 1)rt are the ex te rna l  angles of the po lygon  (p1 U p2) ;  ~ __ 0 

for Iz3t < cc  and  8 = 1 for  z3 = oc. We  normal ize  the confbrmal  m a p p i n g  z(C), z : E ---+ D assuming  t h a t  
2 -- - 2 ,  zl -- z(vl) -- H 4-/-/2, "rl ~< t 1 < 11+1 < "r2 ( j  ---- 1 ,n l  - 1 ), and  n = t2~_ = - 1 ,  T 1 -~ t~ -~ 1, t n ~ _  1 

< < t +l < ( j  = 1, "- 1 ). 
T h e  u n k n o w n  cons t an t s  v2, v3, and  t k (k = 1, j --  2, n l ;  k -- 2, j -- 2, n 2 - 2 )  are found f rom the  

2 

ibllowing s y s t e m  of  equat ions ,  which defines the  geomet ry  of t he  po lygon  P -- (J pk: 
k----O 

j = 1 4- ")', n2 - 2 ) ,  

(2) J 

H~ -- ~ 'Al(vi)II /(v/) ,  i = 2 , 2 4 - ' 7  (n l  ~> 1, n2 ~> 3). 

Here IIi = I I ( r162  - T{) (i = 2, 3); "~ = 0 for  Iz3I < oo and ~/- -  1 for z3 -- oc. 
Note  tha t ,  according  to condi t ions  (2), not all lengths  of  the  segments  of  the  po lygon  p2 are fixed. 

This is re la ted  to  the  presence  of a hor izonta l  section of leaking (dra inage)  whose length is a sought  quan t i t y  

in the  vic ini ty  of  the  po in t  z4 -- p2 N L.  
2. A P r i o r i  E s t i m a t e s .  We use  the  notat ion ~ -- ( a l l , . . . ,  ~11; a21,..., a2n2) E Rn (n  = nl  + n2) for 

2 

the characteristic of interior angles a~:r of  the  polygon P -- LJ p k ,  l --  (111,..., l~1;12, -. -, 12n2-2)(lml ___ H2, 
0 

l 2 -- H3 for z = cx)) for the  metric characteristic of P, and call p = (a, l) the geometric characteristic of P .  
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We consider the family G(5) of simple polygons P C G with the characteristics p E G(6): 

{ 0 < 6 ~ < a ~ < 2 ,  (j ,k) e I ;  0~< 1 2 " (a 1, an2 ) <~ 3/2 - 6, 
'n k 

G ( 6 ) =  E ( ( ~  _ l)  __- o, k=l ,  2 (c~12=0 for z 3 = c o ) ,  (3) 
j = l  

Ilnl~l~5 -1, j= l ,n l ,  k = l ;  j = l , n 2 - 2 ,  k = 2 ,  
nk 

where I = (j  = 2 : n l , k  = 1; j = 1,n2 - 1 , k  = 2). The condition E ( a ~  - 1) = 0 ensures the validity of the 
j = l  

necessary est imate 0 < [~[21z;I < oc in the vicinity of ~ = co. 
We assume that  Atk -- Itk --t~[ (j = l~nk--l,k = 1 , n -  2) and consider u = ~-" j - -  ! j+ l  

" ' ' '~n1 '  i ~ ' ' ' '  n2--2Y E R ( t n l + l  -~- T2~ 

For the solution u E R "-2 of system (2) corresponding to the simple polygon P c G(6), we establish 
the validity of the following inclusion (a priori estimates): 

u e n = { u l 0 < s ( 5 ) < ~ A r  j = l , n k _ i ,  k = 1 , 2 } .  (4) 

Here the constant  s(6) > 0 depends only on the geometric characteristic p of the polygon P in (3). 
We consider one corollary of system (2): 

1 4 

H = f YI0(t) dt, Ho = I I  it - r~1-1/2. 
--al k=l 

Taking into account that [~'3I ~ t2 --2 we find H ~ K1(:r2 - 1) -I/2, whence we obtain r 2 - 1 ~ (H-1KI)  2 - 

Let r -- (~-2 - 1) --~ 0. Then we have 
1 1 

H>~ f IIodt>~K~l f ( l + r - t ) - l d t ,  i.e. r>.(eHK~--l)-l=~2>O. 
0 0 

Coming back to the relation for H, we obtain H ~ K4e21/2([v3[ - 1) -1/5, whence we have ]r3[ ~< Ks. 
We now establish the validity of the estimate t~  - 1 ~> s > 0. Assume, to the contrary, that r --- 

( t~  - 1) -* 0. We introduce the auxiliary function 

1--r 

Mr(C) = ~ri , Mr(C) --* M(C), r ---* 0, 1r < co. 

- 1  

We consider the half-circle K~ = {[4 - 1 - r/2[ = r} N {Im~ > 0} and show that  

iAA=lf (C)M (C)dC]- O r- O. 

K~ 

In this case, obviously, we have l~(r) --* 0 (k = 1 , n l -  1), which is impossible; thus, we obtain 

t m - 1  ~ > e > 0 .  
2 n l  

In accordance with the geometry of the polygon P -- U pk,  we have E / 3 ~  = 0. We assume that  
0 k = l  

n l  

E = E' + E", with all r < 0 collected in E' and all/3~ > 0 in E n, and note that  En/3~ = -E'/3~ -- # > 0. 
1 

Taking this into account, we find 

- ~ T z - - L  " 

- 1  
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Since ~ ( t )  < 2 ~ for t E [ -1 ,  1 - r], t hen  we have 

Ih/r(r  ]~ - II 1/2 ~< Co (~ E Kr ,  r ~< 1/2),  

which leads  to the  es t ima te  IArt ~< ClrW2. In  this case, obviously,  we obta in  l~(r) --. 0 (k -- 1,nl  - 1), which 

is imposs ib le ,  i.e., t~ - 1 ~> ~ > 0. I t  is p roved  in a s imilar  m a n n e r  tha t  t~ - 1 ~> ~ > 0 for k = 2 ,n l  - 1. 
rtl 

We assume  tha t  v 2 - t p  1 - r --*, 0 (p---- 2 , n l ) .  I f  tiP -- Z / ~  r 0, t h e n  in relat ion (2) we ob ta in  
k = p  

H2 ---- rclII2(v2)M(T2)l, M ( r 2 )  • 0, c~, and  II2(v2) --* 0 for  13P > 0 and H2(T2) --- co for ~P < 0, which 

con t r ad i c t s  condi t ion (3); therefore,  we havel lnH21 ~< ~-1  < c~. '  Let  ~3P _- ~--~/3~ = 0. We assume t h a t  
n l  k = p  

~ -- ~' + ~" with all f ~  >/0 collected in Z '  and all/3~ < 0 in Z".  We use t he  no ta t ion  ~'~q~ = # > 0 
k = p  

and En/3~ = - v ;  in accordance  wi th  the  assumpt ion  f~P = 0, we have # - v = 0. W e  consider the expression 

for lp-1 (p >~ 2) in (2), t ak ing  into account  t ha t  tpl_l does no t  belong to converging pa ramete r s ;  therefore,  we 
have  tip - 1 tp_ 1/> 2~ > 0 (~ is fixed). We assume tha t  tp 1 ---- v and  v2 - r ~ r --* 0. T h e n  we obta in  

Zp_l >1 ~ dt >1 K (,- --~)~(~- + ,- - t) -~  dt =__ KZ(T) .  

T --~ T --6 

We p e r f o r m  the  subs t i tu t ion  r - t = sr  in the integral  I ( r ) :  

f f( I ( r ) =  s ~ ( l §  -~ds>l  1~- ds--+oo as r ~ O ,  

0 1 

which con t rad ic t s  condi t ion (3) I inlp_ll  ~< 5 -1 < oc. Thus ,  we have establ ished 

1 + zl ~ t~. ~< 7"2 - -  ~ 2 ,  k = 2, n l ,  (~l, x2) > 0. 

T h e s e  inequalit ies m a k e  it possible  to use the e s t i m a t e s  u~ = t~+ 1 - t~ /> x > 0, where k -- 1 ,n l  
2 

(tn~+l ---- v2), which are val id in the  case of a finite po lygon  P = U p k  [1]. S imi la r  considerat ions are also 
0 

2 2 appl icab le  in proving the  e s t ima te s  A t  2 = tk+ 1 -- t k ~> E > 0, where  k = 1, n2 - 1 (t 2 -- r3), corresponding to  

the  po lygon  p2 .  T h e  a priori es t ima te s  (4) axe proved. 
4 

R e m a r k  1. The  m a i n  difficulty in obta ining e s t i m a t e s  (4) is the fact t h a t  t he  densi ty  h(t) - H It - 
1 

r41-1/2 of  the  integral  M(~)  in (1) depends  on the sought  cons tan t s  7-2 and  r3 ( r l  = 1 and r4 = - 1 ) .  In  an  
a p p r o p r i a t e  represen ta t ion  of  M ( ~ )  in [1, p. 111], h(t) is a funct ion of only p r e s c r i b e d  constants  rl  and r4. 

R e m a r k  2. As follows f rom the  p roof  of  the a priori es t imates  (4), even if p O E  G(5) is not a s t ra igh t  

line, the  val idi ty  of  (4) is obvious ly  re ta ined  in this case too.  
R e m a r k  3. Ano the r  no rmal i za t ion  of conformal  m a p p i n g s  defined in (1) is possible:  ~'l = 1, r4 = - 1 ,  

and  r3 = - 2 .  T h e n  f rom the  re la t ion  
1 

g(~-~) = Ir~0(t)l dt ~ < O, N O )  = ~ ,  H ( ~ )  ---- 0 , 

--1 

we can  unique ly  de te rmine  ~-~ and,  hence,  the  flow rate  of  t he  liquid 
~2 

= / IIIo( t ) l  dr. Q 

1 

In  this  case,  one equa t ion  in s y s t e m  (1) should be rejected,  for example,  it is no t  al lowed to set the value of 

H2. There fore ,  this  normal i za t ion  is unphysical .  
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3. L o c a l  U n i q u e n e s s  o f  t h e  So lu t i o n s .  We write  system (2) in an opera tor  form with respect to 
u 1 . 2 . . . .  , t n l , t l , . . .  ,tn2_ 2) = (u l , . . . , u ,~ -2 )  E R ~-2 (n = nl  +n2) :  

l = g ( u ,  = ( g l , . . . ,  ( 5 )  

where I (11,. 1 . 2 l 2 = "' ,  lm, l l , " ' ,  n~-l) -- ( l l , . . . ,  ln-2) is the  metric characteristic of P and a is the characteristic 
of interior angles of P .  

We prove the following properties of the operator  g(u, c~): 

Og~ 
g (u ,a )  E C2(~t • G); Dg = {gij} ~ O, gij Ouj - , ( 6 )  

The sets ~ and G are defined in (3) and (4). 
Differentiability of the components  gi representable in the form 

/j zl 
gi = l] = - ~  dt, 

follows from [1] after reducing the integration intervals to [0, 1]. For the components gn~ = H2 and gm+l = H3, 
Hk = lrlHk(~'k)M(vk)l (k ---- 2, 3), differentiability on th~ set (u,p) E (~ • G) can be verified directly. 

We prove the nondegeneracy of the transformation l = g(u, a),  D g / D u  ~ 0 by a variational method in 
a similar manner  to [1]. We express the variation of l for a fixed a via the variation of the sought solution u 

in (5): 5l -= ( D g / D u ) b u .  Assuming that  5u r 0 for 5l = O, in the resultant  equality we calculate the 
variations of the mappings z : E --* D and r : D --* E through each other: 5z + zr = O. Posing a boundary-  
value problem for 5z from this relation, we obtain 5z ---- H(~)Qm0(~), where Qmo (~) is a polynomial of power 
m0/> 0. We now calculate 5z directly from the representat ion z = z(~): 

P 

z = / H(~)M(~) d~ + zl, 5z = / H(r162 (bz~ = 0), 
J J 
1 1 

O M ] 5tk 

j,k 

Note tha t  15z(c~)l < c~. Comparing 5z and (5z)r in the vicinity of t k, from the resultant representation with 
5z and (6z)r found by solving the boundary-value problem, we finally obtain 

= H (  r - t k )~Y-~Qm(r162  - T2)-1(~ -- T3) -5 .  (7) 5Z 
j,k 

Here 7~ = 0 if 5t~ = 0 and 7~ = 1 for 5t~ ~ 0; 5 = 0 for [z31 < c~ and 5 = 1 for z3 = oo; Qm(r is a polynomial 

of power rn. In this case, we have A - E ak = n l  -{- n2 -~- rt, for [z3[ < c~ and A ---- 1 for z3 = c~. Since 
j ,k 

5t~ = 5t22 = 5t22-1 -= 0, we obtain E ~/~ < n - 3. Then,  according to representat ion (7), in the vicinity of 
j,k 

r ---- co we have [bz[ [([-q < oz, where q -- E ( a ~  - 7k) -t- m0 -- 1 -- 5/> 2, which contradicts the boundedness 
j ,k 

of 5z(c~). Thus,  we have 5z - O, whence it necessarily follows that  r 5u) ~- 0 in the representation for 5z, 
which, in turn,  involves the equality 5u = O. Relations (6) are proved. 

4. E x i s t e n c e  a n d  U n i q u e n e s s  o f  t h e  S o l u t i o n s .  The  a priori estimates (4) and the local uniqueness 
(6) of the solutions of system (2) corresponding to a simple polygon P C G(5) defined in (3) allow us to use 
the me thod  of  continuity to prove its solvability [1]. The  vaxiant of the method of continuity developed in [1] 
involves the construction of local variations of the initial polygon P0 for which the solvability of (2) is known, 
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by transforming P0 to a given polygon P.  By virtue of (6), we have D g / D u  # 0, and the solvability of (2) 
for a small deformation of P0 follows from the theorem of implicit functions. 

An algorithm for constructing a family of polygons Pk converging to a given polygon P is proposed in 
[1], and the solvability of (2) is proved on the grounds of its solvability for the initial polygon P0. 

In jet problems of hydrodynamics [1, Chapter  4], this algorithm is also implemented in the case of 
infinite regions. This  generalization is transferred in a similar manner to problems of filtration theory for 
which properties (4) and (6) are established. The theorem of uniqueness of the solutions of system (2) fbr 
a given polygon P C G(5) also follows from the method of continuity if this theorem is valid for the initial 

polygon P0. 
Let us construct  first an initial polygon P0 for problems of filtration theory, in domains of the type  of 

a half-band (]z3[ <~ oo). We assume that  P~0 = {x = 0, y > Y3 = Imz3}, P~ = {x  = H2 > g , y  > 0}, and 
p2 = {0 < x < H2 - g , y  = xsin(1 - a)}, where a e (1/2,1) [condition (3)]. The  head g is given, and the 
depth H2 is not fixed yet.  Then in (1) we have 

1~( r  = ( r  - -  T2) - -1 ( r  - -  T 3 ) a - - l ( r  - -  T4) 1-~ 7"1 = 1, V4 = --1. 

In addition, we fix the constant v3 = - 2  and from the condition 

1 

H = IIIo(t)l dt - H0-2 ) ~ 2  < 0, H(c~) -- 0, H(1)  -- oo 

--1 

we uniquely determine r2 and, consequently, H2 ---- 7rtH2(r2)M(~)I in (1). 
,k (j  = 1,nk, where k = 1 and 2) with angles a ~ r  at them on p k  in the initial If there are apices ~j 

2 
polygon P ---- U pk,  then for the polygon P0 we introduce fixed operands tkoj of the "apices" z~j E Po k (z 1 -~ zl, 

0 
2 ____. Z4) with angles akojr~ = ~r. They  should obey the conditions z 2 = z3, and zn2 

1 . t21 7"3 ~" t2j <~ t 0 j + l  < ")-4- t l l =  1 ~. f ly < t0j_}_ 1 < "1"9, = 2 

Using the constructed conformal mapping z = z0(~), z0 : E ~ Do, P0 C ODo, we uniquely determine the apices 

.k = zo(tkoj) and, consequently, loj = ]Zkoj+l - Zkoj[. "oj 
2 

System (2) corresponding to the thus-fixed polygon Po -- (.JPo k (Zkoj C Po k, ako5 = 1) in terms of 
1 

construction is uniquely solvable with respect to uo = ( t i e , . . . ,  t in , ,  v2; t 2 , . . . ,  t2,_2), i.e., Po has the required 
properties of the initial polygon. The deformation of P0 to the prescribed polygon P corresponding to the 
initial problem of fi l tration theory is now constructed using a s tandard procedure [1, Chapters 3 and 4]. 

2 
Let z3 = co. We construct a polygon Po ---- (.J P0 k: 

0 

P~ = {x -= O,-oo < y < c~}, P~ = {x  = H2 > H, y > O }, 

Po 2 = {x = H 2 -  H;  y < yo = Imzo, Yo < Y < Y4 = Imz4}, 

and there is an angle ao~r -- 2~r at the point zo E p2 (section of P02). The head H and the depth H2 are set. 

In (1), we have 

n(~)  = [(~ - 72)(~ - 7"3)]-1(~ - 70), z0 = z00-0), z0: E -.* Do, Po C ODo. 

As in the previous case, we fix Vl = 1, T4 = -1 ,  and r3 = - 2 ,  thus, defining v2 from the condition 
1 

g = / [ H 0 ( t ) [  dt. 
d 

- 1  
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We now consider the equation for H3 = / / 2  - H > 0: 

(dHa ) 
>o, 

v2 -- -r3 

from which we uniquely find vo E (v3, v4). 
If necessary, we fix the constants tkoj and construct the points Zkoj --- zo(tkoj), zo : E --~ Do, Po C ODo. 
System (2) corresponding to the constructed polygon Po is, obviously, uniquely solvable; hence, P0 has 

all the necessary properties of the initial polygon. We prove the following theorem. 
T h e o r e m  1. Let  liquid filtration occur in a domain D bounded by a free boundary L and a simple 

2 
polygon P = U Pk c G [condition (3)]. Then system (2) w/th respect to the vector u E R n-2 of the sought 

o 
parameters of the conformai mapping z : E -* D, OD = P U L and, hence, the initial problem of  filtration 
theory are uniquely solvable. 

R e m a r k  4. In [1, Chapters 3 and 4], the family Pm k --~ F k (m -+ c~) is used to justify the limiting 
transition to given curved boundaries F k (k ---- 1, 2), which is also applicable in the examined problems of the 
filtration theory. However, the uniqueness of the solutions is not guaranteed in the limiting case. 

R e m a r k  5. For curved boundaries F k C OD, the theorem of existence and uniqueness of filtration 
problems can be established by other methods [1, Chapter 8, w 5]. 

Let, for definiteness, z3 = co, 

Fk: x = f k ( y ) ,  [y[~>y0 k (y01=0, y 2 = i m z 0 ) .  

We assume that f k ( y )  E C2(Fk), f k  =_ x k = const for [y[ ~> yl k > y0 k, and dfk /dy  ~ 0 for y0 k < [y[ < y~. We 
make the substitution of variables: x - f k ( y )  = ~ _ x k and y = ~?. Then F k in the new variables will be 
transformed to straight half-lines pk (second example of P0). The resultant simplest boundary-value problem 
for the generalized ar/alytical function z = F(~) has a unique solution [1, p. 388]. 
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